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The use of Impulse Response Function 
for Modal Parameter Estimation 

by Svend Gade & Henrik Herlufsen 

Abstract 
This article discusses the errors that are introduced when calculating the 
impulse response function from the frequency response function using DFT/ 
FFT analysis technique. 

The impulse response function is used in many applications of system analy- 
sis where a description of the system characteristics is preferred in the time 
domain rather than in the frequency domain. The case where the system is a 
single degree of freedom system (SDOF), with viscous damping, is analysed. It 
is shown that the estimated impulse response function is not described by a 
single exponentially decaying sine wave but rather as a sum of exponentially 
decaying sine waves. It is important to apply this slightly more complex model 
when the measurements are to be used for mathematical modelling of systems 
containing lightly damped resonances and where measurements free of the 
influence of leakage are performed. 

This article represents an expansion of papers presented at the Modal 
Analysis Conference ISMA 15, held in Leuven, Belgium 1990 and included in 
the Proceedings of IMAC 9, Firenze, Italy 1991. 

Resume 
Cet article décrit les erreurs pouvant survenir lors du calcul de la réponse 
impulsionnelle à partir de la fonction de réponse en fréquence, dans le cadre 
d'une analyse DFT/FFT. 

La fonction de réponse impulsionnelle intervient lorsque, pour décrire les 
caractéristiques d'un système, les techniques d'analyse en fréquence dans le 
domaine temporel sont préférées à celles du domaine fréquentiel. Le cas d'un 
système à un degré de liberté (SDOF) avec amortisseurs à fluide est ici exa- 
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miné. II est montré que la fonction de réponse impulsioimelle estimée n'est pas 
représentée par une seule onde sinusoïdale à décroissement exponentiel mais 
plutôt par une somme de ces ondes. II est important d'appliquer ce modèle un 
peu plus complexe lorsque les mesures doivent servir de base à des modèles 
mathématiques de systèmes présentant des resonances légèrement amorties, 
et dans le cas de mesures ou l'influence de fuites n'est pas prise en compte. 

Cet article se place dans le prolongement des articles exposes lors de la con- 
férence sur l'analyse modale ISMA 15, à Louvain en 1990 et inclus dans le 
compte rendu de la conférence IMAC qui s'est tenue à Florence en 1991. 

Zusammenfassung 
In diesem Artikel werden die Fehler diskutiert, die entstehen, wenn die Im- 
pulsantwortfunktion mit DFT/FFT-Analysetechnik aus der Frequenzgang- 
funktion berechnet wird. 

Die Impulsantwortfunktion wird bei zahlreichen Systemanalyse-Applika- 
tionen verwendet, wenn für die Beschreibung der Systemcharakteristiken der 
Zeitbereich gegenüber dem Frequenzbereich bevorzugt wird. Es wird der Fall 
eines Systems mit einem einzigen Freiheitsgrad (SDOF) und viskoser Damp- 
rung untersucht. Es wird gezeigt, daß die geschätzte Impulsantwortfunktion 
nicht durch eine einzelne exponentiell abklingende Sinuswelle, sondem eher 
als die Summe exponentiell abklingender Sinuswellen beschrieben wird. Es 
ist wichtig, dieses etwas komplexere Modell für Messungen anzuwenden, die 
zur mathematischen Modellierung von Systemen mit leicht gedämpften Reso- 
nanzen dienen, sowie für Messungen, die unbeeinflußt von Leckagen durchge- 
führt werden. 

Der Artikel stellt eine Erweiterung der Dokumentation dar, die auf der 
Modalanalyse-Konferenz ISMA 15 in Leuven, Belgien, 1990 präsentiert und 
auf der IMAC 9, Florenz, Italien, 1991 in die Berichterstattung aufgenommen 
wurde. 

Nomenclature 
dB decibels, ten times the logarithm to a (power) ratio 
e base of natural logarithm, 2.72 .... 
i an integer (-∞ < i ≤ 0 or 0 ≤ i < ∞) 
j imaginary number, √-1 
k spectrum line number (an integer) 
m milli, 10-3
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n relative time constant 
s seconds 
A0 constant amplitude, Residue 
C, C1, C2 amplitude (bias) error 
B & K Brüel & Kjær 
DFT Discrete Fourier Transform 
FFT Fast Fourier Transform, fast version of DFT 
FRF Frequency response function 
H(f) Frequency response function 
Hz Hertz [s-1] 
IDFT Inverse Discrete Fourier Transform 
IRF Impulse response function 
h(t) Impulse response function 
Lε amplitude error in dB 
MDOF Multi Degree of Freedom 
R residue 
∠ R angle of residue 
SDOF Single Degree of Freedom 
SMS Structural Measurement System, Inc. 
STAS Structural Testing and Analysis System 
T FFT record length 
^ estimated value 
εb amplitude (bias) error 
ζ fraction of critical damping, damping ratio 
ϕ phase error [Radians] 
σ decay constant [s-1] 
σm measured decay constant [s-1 ] 
σw decay constant for exponential weighting [s-1] 
t time [s] 
τ time constant [s] 
ωd damped natural frequency [Rad/s] 
∆f3dB 3 dB bandwidth [Hz] 
∆f FFT line spacing [Hz] 
% per cent, 10~2 
F Fourier Transform 
F-1 Inverse Fourier Transform 
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Introduction 
When measuring system characteristics, an input and an output must be 
denned. This will be in terms of a certain physical parameter, point, position, 
direction, etc. Simultaneous measurement of the input signal to the system 
(the excitation) and the output signal from the system (the response) allows 
calculation of the system characteristics such as damping. The function 
describing the dynamic behaviour of the system in the time domain is the 
impulse response function h(t). The corresponding frequency domain function 
is the frequency response function H(f). 

Fig. 1 shows a system with input signal a(t) and output signal b(t). The Fou- 
rier spectra of a(t) and b(t) are A(f) and B(f) respectively, F denotes the Fou- 
rier Transform. 

Fig. 1. System with input signal a(t) and output signal b(t). The Fourier Transforms of 
a(t) and b(t) are A(f) and B(f) respectively 

For this description to be valid the system is assumed to be linear. This 
means that if a1(t) and a2(t) produce the outputs b1(t) and b2(t) respectively, 
then the input a1(t) + a2(t) must produce the output b1(t) + b2(t). 

Physically the impulse response function h(t) is the response of the system to 
a unit impulse signal δ(t). δ(t), also called a Dirac delta function, is an infinitely 
short and infinitely high impulse at t = 0. Its time integral is unity and its Fou- 
rier spectrum is unity at all frequencies, i.e. 
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and 

Each of these weighted and time-shifted delta functions a(t') δ (t-t') at 
the input will produce a corresponding weighted and time-shifted impulse 
response a (t') h (t - t') at the output. The output signal b(t) caused by the 
input signal a(t) will therefore be the superposition of these individual contri- 
butions and 

H(f) =  B(f) 
           A(f)                                                                                                              (5) 

or 

In order to find the relationship between the input signal and the output sig- 
nal we can consider any input signal a(t) as a superposition of weighted and 
time-shifted delta functions, i.e. 

where * denotes convolution. 
The frequency response function H(f) is defined as the complex ratio of B(f) 

and A(f), i.e. 
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Since the multiplication involved in eq.(6) in most cases is a much simpler 
operation than the convolution in eq.(4), description and interpretation of phe- 
nomena is often done in the frequency domain. 

In some applications, however, it is advantageous to present the information 
in the time (or delay) domain rather than in the frequency domain. Examples 
of such applications are: 
○ Determination of time delays in systems 
○ Identification of transmission paths 
○ Measurements of decays and determination of damping values 
○ Mathematical modelling and curvefitting for extraction of system 

parameters 
In this article we will be dealing with the last two application examples. They 

represent situations where the impulse response function is prone to a bias error 
when calculated via an inverse Fourier transform from a leakage free measure- 
ment of the frequency response function using DFT/FFT technique. 

When the system under investigation contains lightly damped resonances, 
the estimated impulse response function will be biased in both amplitude and 
phase. 

Lightly damped resonances in a system causes the impulse response func- 
tion to be long with decaying oscillations, which in the frequency domain corre- 
sponds to sharp, narrow peaks in the frequency response function. 

If the record length in the FFT analysis is not sufficiently long compared to 
the time constant of the decay in the impulse response function, the bias error 
is observed. In the frequency domain this means that the above-mentioned 
bias error is observed if the resonance peak in the frequency response function 
is narrower than the resolution in the analysis even though the calculated 
samples of the frequency response function are free of the influence of leakage. 

Using the impulse response function for system parameter identification 
(curvefitting) and modelling, such as in modal analysis, the bias error will be 
reflected in the residues for the resonances and thereby in the estimated mode 
shapes for the structure, while the natural frequency and damping will be cor- 
rectly estimated. 

B(f) = H (f) A (f)                                                                                                   (6) 

h(t) and H(f) are related via the Fourier transform and therefore contain the 
same information about the dynamic behaviour of the system. 
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Theory 
Let us look at a simple single degree of freedom (SDOF) system. Fig. 2 shows a 
mechanical SDOF system with viscous damping. It consists of a mass m sup- 
ported by a spring with a spring constant k and a viscous damper with damp- 
ing coefficient c. 

Fig. 2. Mechanical single degree of freedom system 

The input is denned to be the force f(t) acting on the mass and the output is 
the displacement x(t) of the mass. 

The frequency response function (FRF), in this case called the compliance of 
the system, is given by 

where ωd, the damped natural frequency, is given by 

7



 

and σ, the decay constant, is given by 

and R is a scaling constant, called the residue. (In the literature the residue is 
sometimes scaled differently by a factor of 2 and/or a 90 degree phase shift). 

An example of the magnitude of H(f) is shown in Fig.3a). The corresponding 
impulse response function (IRF) is an exponentially decaying sine wave as 
shown in Fig. 3b). 

Fig. 3. a) Frequency Response Function (FRF) of a Single Degree of Freedom (SDOF) 
model, b) Impulse Response Function (IRF) of a SDOF model, c) Sampled FRF of a SDOF 
model, d) IRF of a sampled FRF SDOF model 

σ  =
  c  

       2m (10) 
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Mathematically the IRF is given by 

h (t) = Aoe-σtsin (ωdt)                  0 ≤ t                                                                 (11) 

h(t) is thus a product of the three terms. Ao = j2R is a (complex) scaling fac- 
tor given by the residue R, except for a factor of 2 and a 90 degree phase shift. 
e-σt is the exponentially decaying term, determined by the viscous damping 
and called the damping term. sin(ωdt) is the term that oscillates at a frequency 
which is the damped natural frequency. 

If a leakage free measurement of the FRF is performed, the calculated lines 
in the estimated FRF are samples of the continuous ("true") FRF. The "sam- 
pling rate" is the line spacing ∆f, given by the frequency span divided by the 
number of spectral lines in the FFT analysis. This is shown in Fig.3c). 

Leakage free measurements can be obtained by using a periodic input signal 
(excitation waveform) with a period equal to the record length in the analysis. 
Pseudo-random, multisine and periodic random are examples of such excita- 
tion signals. See [1] for a discussion of this. 

Another possibility is to apply a burst random signal whose burst length is 
sufficiently short to keep both the excitation as well as the response signals 
shorter than the record length. 

Rectangular weighting should be used in the FFT analysis in all these cases. 
Sampling in one domain corresponds to periodic repetition in the other 

domain, since multiplication by a periodic delta function (here with period 
∆f = 1/T) in one domain corresponds to a convolution with a periodic delta func- 
tion (here with period T = 1/∆f) in the other domain. 

This means that the IRF is repeated every T seconds, where T = 1/∆f is the 
record length in the FFT as shown in Fig. 3d). The estimated IRF is thus given 
by 

where i is an integer. The estimated IRF, ĥ(t) is said to be aliased, since h(t) 
is longer than the record length, T causing an interference by the periodic rep- 
etition. 

Eq. (12) can also be written as 
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which, in comparison with eq.(11), shows that the decay rate (i.e. the esti- 
mated damping) and the natural frequency are unaffected by the aliasing, 
while the magnitude and the phase of the IRF are dependent on record 
length, T, relative to time constant, τ (= 1/σ), and on the location of damped 
natural frequency, ωd, relative to the location of the frequency lines. As a sim- 
ple interpretation we can conclude the following: 

If ωd coincides with a frequency line, all the decaying sine waves will be in 
phase and have an additive or constructive effect. If ωd lies exactly between 
two lines, every second decaying sine wave will be in phase, while the rest will 
be in opposite phase giving a subtractive or destructive effect. In the first case 
the residue will be overestimated, while in the second case the residue will be 
underestimated. 

In these two cases there is no phase error, while in the more general case, a 
phase error is also observed. 

Case 1: Resonance Coinciding with a DFT 
Frequency Line 
In the general case and only for 0 ≤ t < T and using complex notation, equation 
(13) becomes 
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For a resonance coinciding with spectrum line number k we have 

ωd = 2πk∆f (and T = 1/∆f)        (15) 



 

Thus we have 

ωdiT = 2π · i · k                                                                                                  (16) 
 

which is a multiple of 2π. 
Equation (14) can now be written as 

Comparing eq. (17) with eq. (11) it is seen that the (amplitude) error, εb, for 
the exponentially decaying sine wave can be written as: 
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As a first order approximation we have 

Equation (19) shows that the amplitude error is proportional to the time con- 
stant of the system if the time constant is considerably longer than the DFT/ 
FFT record length, and that the amplitude is overestimated. 

On a dB (logarithmic) scale the error can be expressed as: 

Lε = -20 log (1 – e-σT)     dB   (20) 

and as a first order approximation as: 



 

Lε ≈ 20log (τ/T)   dB   (for τ > 3 · T)                          (21) 

which is shown in Fig. 4 as the upper curve. 

Fig. 4. Maximum amplitude error on Impulse Response Function as a function of relative 
damping 

As seen, the amplitude error can be neglected if T/τ > 2.5, in which case the 
impulse response is attenuated by approximately 20 dB at the end of the 
record. In the frequency domain this corresponds to a 3dB bandwidth of the 
system under test, which is larger than the DFT/FFT line spacing. As another 
example, if τ is 100 times longer than the record length, T, the amplitude error 
is 40dB. 
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Case 2: Resonance Exactly Between Two DFT 
Frequency Lines 
In the case where the resonance is located exactly midway between line 
number k and k+1, equation (15) becomes 

ωd = 2π (k + 1  ) · ∆f       (22)                       2 

Thus equation (16) becomes 

ωdiT = 2π · i · k + π · i                                               (23) 
 

For i even (0, -2, -4, etc.) we have 

e-jωdiT  = ejωdiT   = 1                                                                                            (24) 

and for i odd (-1, - 3, -5, etc.) we have 

e-jωdiT  = ejωdiT   = -1                                                                                          (25) 

So in this case we have an amplitude error of 

As a first order approximation we have 

εb ≈ 1    (for τ > 3 · T)                                                                                          (27) 
       2 

Equation (27) shows that the amplitude is underestimated by a factor of 2 if 
the time constant of the system is considerably longer than the DFT/FFT 
record length. 

On a dB (logarithmic) scale the error can be expressed as 
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Natural frequency ωo = 2 πfo  (≈ ωd for lightly damped resonances) 

                                  Unknown 
Known ∆ω= ∆f3dB = ζ = σ = τ = 

3dB Bandwidth, ∆ω (rad/s) ∆ω ∆ω 
2π 

∆ω 
2ωo 

∆ω 
2 

2 
∆ω 

3dB Bandwidth, ∆f3dB (Hz) 2π∆f3dB ∆f3dB ∆f3dB 
2fo 

π∆f3dB 1 
π∆f3dB 

Fraction of critical damping, ζ, 2ζωo 2ζfo ζ 2πfoζ 1 
2πfo

Decay constant σ (s-1) 2σ σ
π 

σ 
ωo 

σ 1 
σ 

Time constant, τ (s) 2 
τ 

1 
πτ 

1 
2πfoτ 

1 
τ 

τ 
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Lε = -20 log (1 + e-σT) dB                                                                                     (28) 
 
and as a first order approximation 

Lε = -20 log  (2)  dB = -6 dB (for τ > 3 - T)                                                        (29) 

which is shown in Fig. 4 as the lower graph. 

Time-Frequency Relationships 
The amplitude error is seen to be given as a function of T/ , i.e. the ratio 
between the record length (the analysis) and the time constant of the expo- 
nential decay (the damping descriptor). We could just as well use correspond- 
ing frequency domain descriptors, namely the line spacing    (the analysis) 
and the 3dB bandwidth               of the resonance peak (the damping descriptor). 

The relationship between the different damping descriptors is shown in 
Table 1. 

Table 1. Interrelationship between different "damping" descriptors 

∆f3dB 
∆f

τ



 

The basic relationship between time and frequency domain descriptors of 
the damping for a SDOF model is 

τ · σ = 1                                                                                                              (30) 

i.e. time constant multiplied by one half the 3dB bandwidth (in radians per 
second) equals unity. This relationship is sometimes called the uncertainty 
principle. If we increase the resolution in one domain, we lose resolution in 
the other, or if the event becomes narrower in one domain it becomes broader 
in the other. 

Eq. (30) can also be rewritten as 

 τ · ∆f3dB = 1/π                                                                                                       (31) 

If we combine Eq. (31) with the general time-frequency relationship for DFT/ 
FFT analysis as indicated in Eq. (32), 

T · ∆f = 1                                                   (32) 

we get 

π · ∆f3dB = T 
        ∆f        τ                                                                                                       (33) 

which shows that relative damping can be expressed both in the frequency and 
the time domain by easy to interpret numbers which only differ by a factor of 
π. Example: If the system 3dB bandwidth is equal to 10 times the line spac- 
ing, then the record length is 31.4 times longer than the system time constant. 

General Case Error 
The formula for the general case is shown in equation (13). Using the well- 
known relation 

sin (α - β) = sin α · cos β – cos α · sin β                                               (34) 

the impulse response can be written as 
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which in a simplified form is 

ĥ (t) = Aoe-σt sin (ωdt) · C1 - Aoe -σt cos (ωdt) · C2                                                (36) 

From eq. (36) it is clearly seen that the impulse response function can be 
expressed as a sum (difference) of two orthogonal exponentially decaying sinu- 
soidal terms each weighted by a factor of C1 and C2 respectively, which are 
functions of σT and ωdT. 
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Thus the impulse response function can be expressed as the sum of two 
orthogonal terms 90° out of phase with each other. The IRF can also be repre- 
sented by one term including a phase shift, as shown in eq. (39), which is 
merely a conversion of eq. (36) from rectangular to polar coordinates: 

is the phase error. 
In the general case the amplitude error is found to have values between the 

limits shown in Fig. 4. Eight different cases including the curves from Fig. 4 
are shown in Fig. 5. Please note that the x-axis is scaled differently from Fig. 4 
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ĥ (t) = Aoe-σt · C · sin (ωdt - φ)                                (39) 

where 

is the amplitude error and 



 

according to equation (33). Thus Fig. 4 shows the error as a function of relative 
damping using the time domain damping descriptor τ, while Fig. 5 shows the 
error as a function of relative damping using the frequency domain damping 
descriptor, ∆f3dB. 

Fig. 5. Amplitude error of Impulse Response Function as a function of relative damping, 
for eight different cases of resonant frequencies 

Fig. 6 shows the amplitude error as a function of resonance frequency in the 
interval between two DFT frequency lines. Four different damping cases are 
shown, namely where the system 3 dB bandwidth equals the line spacing and 
where the 3 dB bandwidth is 10, 100 and 1000 times narrower than the line 
spacing. It is clearly seen that overestimation only occurs when the natural 
frequency is in the vicinity of a DFT frequency line. 

Fig. 7 shows the phase error as a function of frequency for the same four 
damping cases. There is no phase error in the two previous mentioned special 
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Fig. 6. Amplitude error of Impulse Response Function as a function of frequency, where k 
is DFT line no. k and (k + 1) is DFT line no. (k + 1). Four different damping cases are 
shown 

cases, where the natural frequency either coincides with a spectral line or is 
exactly midway between two spectral lines. Furthermore, Figs. 6 and 7 show 
that the biggest amplitude and phase errors for very lightly damped system 
are found when the resonance frequency is close to a DFT spectral line. 

As a final remark we can conclude that the errors can be neglected if the 3dB 
bandwidth of the system under test is broader than the DFT line spacing. 

Computer Simulations 
The theory and Figs. 4 to 7 have been verified by synthesizing FRFs with dif- 
ferent damping and resonance frequencies. Both frequency domain and time 
domain curve fitters have been used to extract the system parameters (modal 
parameters). The modal software STAS SE v. 5.02 from SMS (Brüel&Kjær 
Type number WT 9100) has been used for these simulations. 
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Fig. 7. Phase error on the Impulse Response Function as a function of frequency, where k 
is DFT line no. k and (k + 1) is DFT line no. (k + 1). Four different damping cases are 
shown 

Measurement Conditions and Equipment Used 
Some FRF measurements were performed on a freely suspended aluminium 
plate with the dimensions of 30cm x 25cm x 2cm. The structure was excited 
via a nylon stinger by a small Brüel & Kjær Vibration Exciter Type 4810 using 
a pseudo-random signal. The force signal was measured using a Brüel & Kjær 
Force Transducer Type 8200. The output vibration signal was measured using 
a small, lightweight (~2.4g) Brüel & Kjær Accelerometer Type 4375. The force 
and vibration signals were analysed using the Brüel & Kjær Multichannel 
Analysis System Type 3550 (DFT/FFT). A similar set-up is shown on the cover 
of this Technical Review. 
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Measurement Results 
The modal parameters of the first resonance were determined using different 
resolutions, ∆f, chosen in binary steps from 0.125 Hz to 16 Hz (see Table 2). 
The resonance of interest, located at 860.2 Hz, had a 3dB bandwidth of 
approximately 150 mHz corresponding to a time constant, τ of 2.1 s. 

FFT 
Resolution 

Relative 
Resolution 

FRF Curve-fit IRF Curve-fit 

∆f  (Hz) T (s) ∆f3dB/ 
∆f 

T/τ ζ (m%) |R| 
(dB) 

∠ R (°) ζ (m%) |R| 
(dB) 

∠ R (°) 

0.125 8 1.24 3.9 10 82.5 179 10 82.2 183 

0.25 4 0.62 1.9 9 82.4 180 9 81.4 175 

0.5 2 0.31 0.97 9 82.5 180 8 81.0 197 

1 1 0.15 0.49 9 82.4 179 9 83.9 218 

2 0.5 77m 0.24 9 82.4 179 9 86.9 232 

4 0.25 39m 0.12 10 82.4 179 10 92.4 238 

8 0.125 19m 61m 9 82.4 179 9 76.7 175 

16 62.5m 10m 30m 11 82.4 179 10 79.9 134 

 
Table 2. Resolution, record length, number of spectral lines per 3dB bandwidth, number 
of time constants per record length, damping estimate as function of critical damping from 
an FRF curve-fit, estimate of residue both magnitude and phase, estimate of damping and 
residue from an IRF curve-fit. In all cases the damped natural frequency was estimated 
within 6m% standard deviation 

Both time as well as frequency domain curve fitters have been applied to the 
measurements. It can be seen when dealing with light damping that the time 
domain curve fitter extracts correct damping and resonance frequency (pole 
location) but incorrect residues. 

In Fig. 8, plots of the impulse response function are shown for four cases. The 
magnitude of the analytical (complex) impulse response function is displayed. 
The analytical impulse response function is obtained by use of the Hilbert 
transform. The Hilbert transform of the real valued impulse response function 
h(t) (the real part) gives the imaginary part j~h (t), and the analytical impulse 
response function is defined as 
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Fig. 8. Impulse response function for different resolutions, only the first half is shown. 
Note the difference in Ymax level near time zero for the four different cases 
a) ∆f = 125 mHz, b) ∆f = 1Hz, 
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Fig.8 (cont.) Impulse response function for different resolutions,c) ∆f= 4 Hz and reso- 
nance coinciding with a frequency line, d) ∆f= 8 Hz and resonance exactly between two fre- 
quency lines 
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The magnitude of the impulse response function is then given by 

 
The magnitude  h(t)  can be considered as being the envelope of h(t). For 

the SDOF system (eq.(11)), the magnitude of the impulse response function 
becomes 

The advantages of using the magnitude instead of the real part are that the 
magnitude does not feature the oscillations (given by the term sin (ωdt) and 
that the magnitude can be shown on a logarithmic (dB) amplitude scale. A log- 
arithmic amplitude scale gives more "dynamic" range in the presentation and 
reveals the exponential decay (given by the term e-σt) as a straight line. 

The magnitude of the estimated impulse response function ĥ(t) is 
Aoe · C (eq. (39)) which on a logarithmic (dB) scale becomes 
-σt · 10 loge2 + constant = -8.69t/τ + constant, i.e. a straight line with a 
slope of -8.69 dB per time constant τ. The magnitude at time t=0 is given by 
AoC. The damping value is thus estimated from the slope and the residue is 
estimated from the magnitude at time t=0, found by extrapolation of the 
straight line of the decay back to time t=0. 

The four cases in Fig.8 represent situations where the line spacing ∆f is: 
a) approximately equal to the 3 dB bandwidth of the resonance 
b) 6 times the 3 dB bandwidth 
c) 24 times the 3 dB bandwidth and the resonance frequency nearly coin- 

ciding with an analysis line 
d) 48 times the 3 dB bandwidth and the resonance frequency nearly mid- 

way between two analysis lines. 
In all four cases a correct decay constant, i.e. damping value, was found and 

the natural frequency was correct as well. For the magnitude, extrapolated 
back to time t=0, giving the residue, we have correct results only in case a), a 
slight overestimation in case b), high overestimation (10dB) in case c) and a 
moderate underestimation (5dB) in case d). 
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As seen from Table 2, the phase error, as expected, is very high, 58 degrees 
(238 - 180) in case c). In case d) the phase error is only 5 degrees, which also 
confirms the theory. 

The authors experienced difficulties for both time and frequency domain 
curve fitters when the 3dB bandwidth was more than 200 times narrower 
than the line spacing. The problem is that we have too few frequency samples 
of the resonance. In this case an exponential weighting function with the iden- 
tical time or decay constant, σw, could be applied to both excitation and 
response signal. This will widen the measured bandwidth of the resonances 
The residue and damped natural frequency will be correctly estimated, but the 
damping overestimated, as shown in Eq. (45): 

ĥ (t) = Aoe-σt · e-σwt · C · sin (ωdt – φ) 

        = Aoe-(σ + σw)t ·  C · sin (ωdt – φ) 

= Aoe-σm ·t · C · sin (ωdt – φ)                                                                       (45) 

Thus the exponential weighting function behaves as an "antialiasing" filter 
This means that the correct damping can easily be calculated from the meas- 
ured damping if the decay constant (the reciprocal of the time constant 01 
length) of the exponential weighting is known: 

     σ = σm - σw                                                                                                      (46) 

Applying the exponential weighting actually corresponds to not measuring 
the Transfer Function, H(s), along the jω axis, H(jω), but along a line parallel 
to the jω-axis crossing the real axis (σ or damping axis) at σw in the right hall 
plane. Thus the residue and the damped natural frequency will be correctly 
estimated. 

Conclusion and Final Remarks 
It has been shown that the impulse response function, when calculated from 
the frequency response function using DFT/FFT techniques, in some practical 
applications suffers a bias error. The bias error is caused by an aliasing effect 
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which appears during the inverse DFT/FFT from the frequency domain (FRF) 
to the time domain (IRF). 

The error becomes significant when leakage free measurements of lightly 
damped systems are performed and the resolution in the analysis is not suffi- 
ciently high compared to the bandwidth of the resonance peaks. The error can 
be neglected if the 3dB bandwidth of the resonances is greater than the line 
spacing ∆f. 

The SDOF system with viscous damping has been investigated (eq.(39)). 
The error can in this case be expressed by an amplitude error (eq. (40)) and a 
phase error (eq. (41)). Both of these are given by the ratio of the record length T 
to the time constant τ (or the ratio of the 3dB bandwidth ∆f3dB to the line spac- 
ing ∆f) and the location of the damped natural frequency ωd relative to the 
location of the frequency lines in the analysis. 

The exponential decay, determined by the damping in the system, is not 
affected in the case of viscous damping. For other types of damping mecha- 
nisms, however, the aliasing effect could influence the damping value estima- 
tion. 

When the impulse response function is used for mathematical modelling, 
such as in modal analysis, the error is directly reflected in the residues of the 
resonances and the given corrections have to be applied. 

Special care should be taken when modal analysis is performed using single 
input/single output measurements with a shaker and one accelerometer. The 
accelerometer is in this case moved to a different position for each measure- 
ment. This can cause the damped natural frequency to be different in the dif- 
ferent measurements due to the mass loading effect. The bias error will 
therefore be different for each individual measurement and, if the corrections 
are not applied on the estimated residues, the resulting mode shapes will be 
contaminated with what appears to be a random error. 

Leakage free measurements can be obtained by using a proper excitation 
signal, such as pseudo-random, multisine, periodic random or burst random 
and applying rectangular weighting in the analysis. 

If a random signal is used for excitation and Hanning weighting is applied in 
the analysis, at least 10 FFT lines per 3dB bandwidth are required to make 
the measurement appear leakage free [2, 3], and no effect of the bias error will 
be observed in the impulse response function. If the measurement is not per- 
formed with the required resolution, leakage will smear out the resonance 
peaks causing a so-called resolution bias error [1]. The resulting error in the 
estimated impulse response function can in this case not be compensated for. 
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For impulse excitation (hammer or impact excitation in structural analysis) 
an exponential weighting must be applied to the response signal to force this 
signal to be attenuated by approximately 40 dB at the end of the record. In this 
situation there will only be an influence of the exponential weighting which 
will appear as well-defined leakage. This can be compensated for as indicated 
in eq. (46) (see also [3]) and no effect of the aliasing is observed on the impulse 
response function. 
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Complex Modulus and Damping 
Measurements using Resonant and 
Non-resonant Methods 

by S. Gade, K. Zaveri, H. Konstantin-Hansen and H. Herlufsen 

Abstract 
Traditional methods of damping measurement involved the use of sinusoidal 
signals for the excitation at low frequencies for bending resonances of speci- 
mens and at high frequencies for longitudinal resonances. With the advent of 
the dual channel real-time analyzers, wide-band random excitation can be 
conveniently used to excite and measure the response of the specimens simul- 
taneously, whereby considerable time savings can be achieved. Two methods, 
one non-resonant and the other resonant, are outlined, the former yielding 
the real and elastic modulus as a continuous function of frequency. The 
results of the two methods are also compared. 

Resume 
Les anciennes mesures d'amortissement faisaient intervenir des signaux d'ex- 
citation sinusoïdaux, à basse fréquence pour les résonances de flexion, et a 
haute fréquence pour les résonances longitudinales. Les analyseurs bicanaux 
temps réel autorisent aujourd'hui un considerable gain de temps en permet- 
tant l'utilisation de signaux aléatoires large bande pour l'excitation et la 
mesure de la réponse simultanées de l'objet teste. Deux methodes sont ici com- 
parées, ainsi que leurs résultats respectifs, l'une faisant intervenir le phéno- 
mene de resonance, l'autre non. Cette demière méthode donne le module 
d'élasticité et le module réel comme une fonction de réponse en fréquence conti- 
nue. 

Zusammenfassung 
Traditionelle Methoden für Dämpfungsmessungen pflegten sinusförmige Sig- 
nale zur Anregung zu verwenden: tiefe Frequenzen für Biegungsresonanzen 
von Prüflingen und hohe Frequenzen für longitudinale Resonanzen. Mit 
Breitband-Rauschanregung durch Zweikanal-Echtzeitanalysatoren ist es 
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möglich geworden, auf bequeme Weise die Prüfstruktur gleichzeitig anzure- 
gen und ihr Antwortverhalten zu messen, was eine beträchtliche Zeiterspar- 
nis bedeutet. Zwei Methoden, eine nichtresonante und eine resonante, werden 
skizziert, von denen die erstgenannte den reellen und Elastizitätsmodul als 
kontinuierliche Funktion der Frequenz liefert. Es erfolgt ein Vergleich der Er- 
gebnisse beider Methoden. 

Nomenclature 
a acceleration [m/s2] 
c viscous damping coefficient [N · s/m] 
d deflection [m] 
e base of natural logarithm, 2.72... 
f force [N] 
fo undamped natural frequency [Hz] 
j imaginary number, √-1 
k kilo, 103 
k stiffness [N/m] 
I length of isolator [m] 
m mass [kg] 
t time [s] 
v velocity [m/s] 
x displacement [ml 
x·  velocity [m/s] 
ẍ  acceleration [m/s2] 
A cross sectional area of isolator [m2] 
E* complex elastic modulus [N/m2] 
E' modulus of elasticity. Young's modulus [N/m2] 
E" loss modulus [N/m2] 
F force spectrum [N · s] 
H compliance frequency response function [m/N] 
X displacement spectrum [m · s] 
ε sinusoidal strain [dimensionless] 
ε̂  strain, (relative elongation, ∆l/l) [dimensionless] 
η loss factor [dimensionless] 
π pi, 3.14... 
θ angle of complex modulus [rad] 
σ sinusoidal stress [N/m2] 
σ̂  stress [N/m2] 
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ω angular frequency [rad/s] 
ωo undamped natural frequency [rad/s] 
∆f 3 dB bandwidth [Hz] 
∆l elongation of isolator [m] 

Introduction 
The stress-strain relationship of visco-elastic materials, generally used in the 
damping treatment of structures, can be described by two properties, such as 
the perfectly elastic (in-phase) stress-strain modulus and the loss factor. The 
values of these properties need to be determined in tension or compression for 
materials used as unconstrained damping layers and as anti-vibration mount- 
ings under machinery and under foundation blocks. 

Using a dual channel FFT analyzer, the specimen can be excited using wide- 
band random excitation, and the properties determined from the frequency 
response spectra, as a continuous function of frequency, as shown in the follow- 
ing. 

Another possibility is to preload the specimen by a well-known mass, such 
that the preloaded damping material becomes a part of a resonant mass- 
spring-damper system. Damping, e.g. loss factor, is then determined from the 3 
dB bandwidth of the resonance. The procedure is then repeated at different 
frequencies of the specimen using different mass-loadings. 

The two methods are demonstrated and compared in this article. 

Theory for the Non-resonant Method 
As most elastomers are elastically imperfect, the strain lags the stress. An 
applied sinusoidal stress (force per area) usually results in a sinusoidal strain 
(relative elongation ∆ l/l), the phase angle θ between them remaining constant 
during a complete strain cycle, although it can vary with the strain amplitude 
and the frequency. 

Let σ be a sinusoidal stress applied which, using complex notation, can be 
written as: 
σ  = σ  x ejωt                                                                                                          (1) 

The strain, e, resulting from this stress will be: 
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ε = ε x e j(ωt - θ)                                                                                                     (2) 

Thus the complex elastic modulus, E*, is: 

E* = σ  = σ  x ejθ          ε      ε 
(3) 

The coincident (in phase) elastic modulus (modulus of elasticity or Young's 
Modulus), E', will be given by: 

E" = ( σ ) x cos θ                                                               ε                                     
                 (4) 

 
and the quadrature (90° out of phase) loss modulus, E", will be given by: 

E" = ( σ ) x sin θ 
ε   ^  (5) 

The amount of imperfect elasticity possessed by the material is given by the 
ratio of these two moduli and is denned by the loss factor η as: 

E” 
     η =      = tan θ E’ 

(6) 

Fig. 1 shows a vector diagram illustrating these quantities, where E* repre- 
sents the complex modulus. Thus only two properties need to be measured, 
either E* and θ or E' and E'' (Magnitude/Phase or Real/Imaginary parts). 

As stress is force F divided by area A and strain is deflection  divided by 
original length l, eqs. (4) and (5) may be written as: 

         |F|      l                       (F)       l                                                                   (7) E’ =  —  x —  cosθ = Real —  x — 
|d|     A                       (d )     A 
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Fig. 1. Vector presentation of various moduli 

where A is the cross-sectional area of the isolator and l is the length of the iso- 
lator. 

For random excitation, the ratio offeree to displacement, the dynamic stiff- 
ness, can be determined as the frequency response function between the force 
and displacement (acceleration integrated twice). The theory behind frequency 
response function measurements is found in Ref. [1]. 

The dynamic stiffness, being complex, can either be measured as magnitude 
and phase or as real and imaginary parts. By multiplying the dynamic stiff- 
ness by the length of the isolator and dividing by the cross-sectional area of the 
isolator, we obtain the complex elastic modulus E*. The loss factor is given by 
the phase measurement. 

A rigorous derivation of the theory can be found in Ref. [2]. 

Theory for the Resonant Method 
By mounting a mass on top of the visco-elastic material, the combination 
behaves as a simple mass-spring-dashpot system, i.e., a single degree of free- 
dom (SDOF) system, Fig.2. 

Using Newton's second law and time domain formulation, we obtain: 
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Fig. 2. a) A SDOF, Single Degree of Freedom Model, b) The magnitude of the frequency 
response functions |H| of a SDOF model 

Using the fact that differentiation corresponds to multiplication by jω in the 
frequency domain, we obtain the following expression for the compliance Fre- 
quency Response Function, FRF: 

which shows that the compliance FRF equals the reciprocal of the stiffness, k, 
at low frequencies and that the accelerance FRF equals the reciprocal of the 
applied mass at high frequencies. See Fig. 2. 

At the resonance frequency, ωo the real part of eq.(10) becomes zero and the 
level is exclusively determined by the damping mechanism, c. 

The resonance frequency is given by the square root of the ratio between 
stiffness and mass: 
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It can be shown that the loss factor, η, a measure for the damping, is given by 
the ratio between the 3 dB bandwidth, ∆f, and the resonan ce frequency, fo: 

η  =  ∆f                                                                                                                (12) 

         
fo

 

Different mass loadings yield damping at different frequencies. 
For random excitation the ratio of displacement to force (mobility type of cal- 
culation), the dynamic compliance, can be determined as the frequency 
response function between displacement (acceleration integrated twice) and 
force. 

More detailed information about damping measurements using resonant 
methods is found in Ref.[3]. 
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Experimental Procedure and Results for the 
Non-resonant Method 
Fig.3 shows the instrumentation set-up used for the determination of the com- 
plex modulus and the loss factor of elastomers used for anti-vibration mount- 
ings. One isolator (machine-shoe) was placed on a seismic mass (concrete 
floor) and excited by a shaker via a nylon stinger. The excitation force was 
 

Fig. 3. Instrumentation set-up and dimensions of isolator 

measured using a force transducer. An accelerometer was mounted beside the 
force transducer such that the force and the acceleration input to the isolator 
could be measured directly. The acceleration and force signals were fed to 
channels A and B of the analyzer, respectively. The shaker was fed a random 
noise signal from the generator section of the analyzer. The force and accelera- 
tion signals were both Harming weighted, and the acceleration signal double 
integrated in the analyzer for determining the displacement. See Fig.3. 

Fig. 4 (lower) shows the measurement set-up giving the parameters chosen 
on the analyzer, while Fig.4 (upper) shows the magnitude of the stiffness Fre- 
quency Response Function. The cursor reading indicates a static stiffness of 
approximately k = 130 kN/m. The coherence function was unity at all frequen- 
cies (except below 10 Hz), illustrating a linear dependency between force and 
displacement signals. See also Fig. 11. 
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Fig. 4. The magnitude of the dynamic stiffness Frequency Response Function and Meas- 
urement set-up 

Fig. 5 (upper and lower) shows the autospectra of the displacement and force 
signals respectively. The shapes of both these curves are similar, illustrating 
the spring-like behaviour of the isolator. 

Fig. 6 shows the magnitude of the Complex Modulus, E*. Thus the dynamic 
stiffness has been rescaled in the transducer set-up by a factor of l/A = 22.41m-1, 
which is the ratio between the length, l and the cross-sectional area, A, of the iso- 
lator. (0.9941 is the transducer sensitivity "adjust".) The irregularity found at 
75Hz is due to a stinger resonance. This was confirmed by using a stinger with 
different dimensions. 
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Fig. 5. Autospectra of displacement and force signals 

Instead of plotting the magnitude and phase, the real and the imaginary 
parts of the dynamic complex modulus, i.e. the elastic (Young's) modulus and 
loss modulus can also be plotted as shown in Fig. 7 a) and b), respectively. It can 
be seen that for increasing frequency, the elastic modulus has a decreasing ten- 
dency whereas the loss modulus (i.e. the damping characteristics) seems to 
increase. 

The loss factor, η (i.e. damping), can now be calculated as a continuous func- 
tion of frequency simply by taking the tangent to the phase, tan (θ). This is 
implemented in the analyzer as a simple User Definable Display Function and 
shown in Fig. 8b). 
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Fig. 6. Magnitude of Complex Modulus. Rescaling is done in the transducer set-up: 0.9941 
x 22.41 = 21.16 

The loss factor at 41 Hz is shown to be tan(4.5°) = 0.076 using the cursor 
readings. Some smoothing has been applied to the graph of the loss factor. 
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Fig. 7. a) Real part of complex modulus i.e. the elastic (Young's) modulus b) Imaginary 
part of complex modulus, i.e. the loss modulus 
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Fig. 8. a) Phase, θ of complex modulus b) Loss factor, η calculated as tan(θ) via a User 
Definable Display Function 
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Experimental Procedure and Results for the 
Resonant Method 
The set-up is similar to the one shown in Fig.3 except that a rigid mass (a 
block of steel) of 2kg was placed on top of the isolator. See Fig.9. 

Fig. 9. A rigid mass of 2kg is mounted on top of the isolator 

For convenience, the force transducer was connected to channel A and the 
accelerometer to channel B, in order to display mobility types of Frequency 
Response Functions directly, although the analyzer also includes the recipro- 
cal of the measured frequency response function as a standard display func- 
tion. Multisine excitation signal and rectangular weighting have been used in 
this case. 

The result of this measurement is shown in Fig. 10 a). A resonance frequency 
is located at 42 Hz. A simple User Definable Auxiliary Information finds the 
3dB bandwidth, ∆f= 3.25 Hz, and thus the loss factor, η = 3.25/42 = 0.076, 
which is in agreement with the results obtained by the non-resonant method. 

The static stiffness can be calculated from eq. (11): k = (2π x 42.625 Hz)2 x 2 
kg = 143 000 N/m which is within 10% of the results obtained with the non-res- 
onant method. 

Of course the static stiffness can be calculated by displaying the dynamic 
stiffness function, which is shown in the lower trace of Fig. 10b). The reciprocal 
of the accelerance function is multiplied by (jω)2 in order to obtain the dynamic 
stiffness and cursor readings at lowest reliable frequency indicate a static stiff- 
ness of approximately 131kN/m. 

In order to find damping at other frequencies, different mass loadings must 
be applied. In our case, measurement was repeated once with a 1kg mass. 
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Fig. 10. a) Accelerance Frequency Response Function. Cursor readings indicate resonance 
frequency and loss factor, b) Dynamic Stiffness. Cursor reading indicates a static stiffness 
of approximately 131 kN/m 

Examples of the results are shown in Fig. 11 a), which displays the dynamic 
stiffness. The resonance was located at 58.7 Hz (~ 42.6 Hz x √(2kg/1kg) = 
60.2Hz). 

The 3 dB bandwidth was 4.4 Hz yielding a loss factor of 0.075 and a static 
stiffness of k = 131kN/m. The lowest reliable frequency is found by viewing the 
coherence function, which is shown in the lower trace of Fig. 11 b). Again the 
results from the non-resonant methods were confirmed. 
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Fig. 11. a) Stiffness Frequency Response Function. Resonance found at 58.7 Hz. Cursor 
reading at 8 Hz indicates stiffness of 131 k.N/m. b) Coherence, lowest reliable frequency is 
found to be around 8 Hz 

Conclusions 
A relatively quick and easy method is described, whereby the elastic (Young's) 
and loss moduli as well as the loss factor of isolators and damping material 
can be obtained as continuous functions of frequency. 

The results were verified at two frequencies using the well-known resonant 
method, where damping is calculated from a 3 dB bandwidth determination. 
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